domingo, 12 de junio de 2011

¿Que es la Óptica?

El sentido de la visión es el medio de comunicación con el mundo exterior más importante que tenemos, lo que quizá pueda explicar por qué la óptica es una de las ramas más antiguas de la ciencia. En broma podríamos decir que la óptica comenzó cuando Adán vio a Eva por primera vez, aunque más seriamente podemos afirmar que tan pronto el hombre tuvo conciencia del mundo que habitaba se comenzó a percatar de muchos fenómenos luminosos a su alrededor, el Sol, las estrellas, el arco iris, el color del cielo a diferentes horas del día, y muchos otros. Estos fenómenos sin duda despertaron su curiosidad e interés, que hasta la fecha sigue sin saciarse completamente.

Antes de hablar de óptica conviene saber lo que ésta es. En forma estricta, podemos definir la óptica de acuerdo con la convención de la Optical Society of America, para la cual es el estudio de la luz, de la manera como es emitida por los cuerpos luminosos, de la forma en la que se propaga a través de los medios transparentes y de la forma en que es absorbida por otros cuerpos. La óptica, al estudiar los cuerpos luminosos, considera los mecanismos atómicos y moleculares que originan la luz. Al estudiar su propagación, lógicamente estudia los fenómenos luminosos relacionados con ella, como la reflexión, la refracción, la interferencia y la difracción. Finalmente, la absorción de la luz ocurre cuando la luz llega a su destino, produciendo ahí un efecto físico o químico, por ejemplo, en la retina de un ojo, en una película fotográfica, en una cámara de televisión, o en cualquier otro detector luminoso.

Sin embargo, con el fin de que la definición de la óptica quedara completa, la siguiente pregunta lógica sería: ¿qué es la luz? En forma rigurosa, aún no se tiene una respuesta completamente satisfactoria a esta pregunta, aunque sí podemos afirmar de manera muy general y elemental que la luz es esa radiación que al penetrar a nuestros ojos produce una sensación visual.

Por otro lado, más científicamente, sabemos que la luz es una onda electromagnética idéntica a una onda de radio, con la única diferencia de que su frecuencia es mucho mayor y por lo tanto su longitud de onda es mucho menor. Por ejemplo, la frecuencia de la luz amarilla es 5.4 x 108 MHz, a la que le corresponde una longitud de onda de 5.6 x 10-5cm. En el cuadro 1 se comparan las longitudes de onda de la luz con las de las demás ondas electromagnéticas. Según los instrumentos que se usen para observarlas, decimos que están en el dominio electrónico, óptico, o de la física de altas energías.

En un sentido mucho más amplio, se considera frecuentemente óptica al estudio y manejo de las imágenes en general, aunque éstas no hayan sido necesariamente formadas con luz o métodos ópticos convencionales. Éste es el caso del procesamiento digital de imágenes o de la tomografia computarizada, de las que hablaremos en la sección sobre procesamiento digital de imágenes.

La óptica, desde que se comenzó a estudiar seriamente, ha desempeñado un papel muy importante en el desarrollo del conocimiento científico y de la tecnología. Los principales avances de la física de nuestro siglo, como la teoría cuántica, la relatividad o los láseres tienen su fundamento o comprobación en algún experimento óptico. Por otro lado, también los grandes avances tecnológicos, como las modernas comunicaciones por fibras ópticas, las aplicaciones de los láseres y de la holografía tienen una base óptica.

CUADRO 1. Espectro electromagnético


Tipo de onda electromagnética
Límites aproximados de sus longitudes de onda

DominioOndas de radio y TV1 000 m0.5 m
electrónicoMicroondas50 cm0.05 mm
Infrarrojo lejano0.5 mm0.03 mm
Infrarrojo cercano30 mm0.72 mm
Dominio ópticoLuz visible720 nm400 nm
Ultravioleta400 nm200 nm
Extremo ultravioleta2 000 500
Física deRayos X500 1
alta energíaRayos gamma1 .01

donde las unidades usadas aquí son:
1 micra = 1 mm = 10-6 m
1 ngstrom = 1 = 10-10 m
1 nanómetro = 1 nm = 10-9 m



LOS PRIMEROS DESCUBRIMIENTOS

A continuación haremos una breve revisión histórica de cómo se ha desarrollado esta ciencia, desde los comienzos más tempranos de que se tienen registros o evidencias. Mucho antes de que se iniciaran los estudios metódicos y formales de los fenómenos ópticos, se construyeron espejos y lentes para mejorar la visión. Por ejemplo, los espejos ya fueron usados por las mujeres del antiguo Egipto para verse en ellos (1900 a.C.), como pudo comprobarse al encontrar uno cerca de la pirámide de Sesostris II. Naturalmente, estos espejos eran solamente unos trozos de metal con un pulido muy imperfecto. En las ruinas de Nínive, la antigua capital asiria, se encontró una pieza de cristal de roca que tenía toda la apariencia de una lente convergente. Una de la más antiguas referencias a las lentes se encuentra en los escritos de Confucio (500 a.C.), quien decía que las lentes mejoraban la visión, aunque probablemente no sabía nada acerca de la refracción. Otra mención muy temprana de ellas se encuentra en el libro de Aristófanes, Las nubes, una comedia escrita en el año 425 a.C., en donde describe unas piedras transparentes, con las que se puede encender el fuego mediante la luz del Sol. Probablemente fue él quien construyó la primera lente del mundo, con un globo de vidrio soplado, lleno de agua, en el año 424 a.C. Sin embargo, ésta no fue construida con el propósito de amplificar imágenes, sino de concentrar la luz solar. Según la leyenda, Arquímedes construyó unos espejos cóncavos, con los que reflejaba la luz del Sol hacia las naves enemigas de Siracusa para quemarlas. Aunque esto se puede lograr si se usa una gran cantidad de espejos que reflejen todos simultáneamente la luz hacia el mismo punto, probablemente este hecho sea más leyenda que historia.

La primera mención al fenómeno de la refracción de la luz la encontramos en el libro de Platón, La República. Euclides estableció por primera vez (300 a.C.) la ley de la reflexión y algunas propiedades de los espejos esféricos en su libro Catóptrica. Herón de Alejandría (250 d.C.) casi descubrió el Principio de Fermat al decir que la luz al reflejarse sigue la mínima trayectoria posible. Claudio Tolomeo (130 d.C.), sin duda uno de los más grandes científicos de la antigüedad, escribió el libro Óptica, donde establece que el rayo incidente, la normal a la superficie y el rayo reflejado están en un plano común. Tolomeo también encontró una forma aproximada de la ley de refracción, válida únicamente para ángulos de incidencia pequeños.

Durante la Edad Media, la óptica, al igual que la demás ciencias, progresó muy lentamente. Este adelanto estuvo en manos de los árabes. El filósofo árabe Abu Ysuf Yaqub Ibn Is-Hak, más conocido como Al-Kindi, que vivió en Basora y Bagdad (813- 880 d.C.), escribió un libro sobre óptica llamado De Aspectibus. En él hace algunas consideraciones generales acerca de la refracción de la luz, pero además contradice a Platón al afirmar, igual que Aristóteles, que la visión se debe a unos rayos que emanan de los cuerpos luminosos, y no del ojo, de donde parten viajando en línea recta para luego penetrar al ojo, donde producen la sensación visual. Otro científico árabe muy importante, Ibn al-Haitham, más conocido por su nombre latinizado Alhazen (965-1038 d.C.), hizo investigaciones sobre astronomía, matemáticas, física y medicina. Alhazen escribió un libro llamado Kitab-ul Manazir (Tratado de óptica), donde expone sus estudios sobre el tema. Entre sus principales resultados está el descubrimiento de la cámara obscura, mediante la cual pudo formar una imagen invertida de un objeto luminoso, haciendo pasar la luz a través de un pequeño orificio. Alhazen también hizo el primer estudio realmente científico acerca de la refracción, probando la ley aproximada de Tolomeo y además encontró una ley que daba las posiciones relativas de un objeto y su imagen formada por una lente o por un espejo convergente. Sin duda este científico fue la más grande autoridad de la Edad Media, y tuvo una gran influencia sobre los investigadores que le siguieron, incluyendo a Isaac Newton.

Los árabes ya tenían lentes, pero muy imperfectas y rudimentarias. Tuvieron que pasar muchos años, hasta que en el año 1266, en la Universidad de Oxford, Inglaterra, el fraile franciscano inglés Roger Bacon (1214-1294) talló las primeras lentes con la forma de lenteja que ahora conocemos, y de donde proviene su nombre. En su libro Opus Majus, en la sección siete, dedicada a la óptica, Bacon describe muy claramente las propiedades de una lente para amplificar la letra escrita. Sin duda a Bacon se le puede considerar, en plena Edad Media, como el primer científico moderno partidario de la experimentación cuyos estudios son impresionantemente completos y variados para su época.

La razón por la cual no se habían fabricado lentes de calidad aceptable con anterioridad, era la ausencia de un buen vidrio. A principios de la Edad Media, la fabricación de vidrio de alta calidad era un secreto celosamente guardado por los artesanos de Constantinopla. Los bizantinos habían descubierto la necesidad de emplear productos químicos de muy alta pureza para obtener buena transparencia, al mismo tiempo que habían adquirido una gran habilidad en el tallado y pulido del vidrio. Durante la cuarta Cruzada, en 1204, los venecianos decidieron saquear Constantinopla en lugar de acudir a Tierra Santa, por lo que descubrieron sus secretos. Al regresar a Venecia, los invasores de Constantinopla se llevaron consigo un gran número de artesanos especializados en el manejo del vidrio, lo que les permitió después adquirir una gran reputación en toda Europa. Hasta la fecha, la artesanía del vidrio de Venecia tiene fama en todo el mundo.

Después de tallar las primeras lentes, el siguiente paso natural era montarlas en una armazón para colocar una lente en cada ojo, con el fin de mejorar la visión de las personas con defectos visuales. Como era de esperarse, esto se realizó en Italia, casi un siglo después, entre los años 1285 y 1300 d.C., aunque siempre ha existido la duda de si fue Alexandro della Spina, un monje dominico de Pisa, o su amigo Salvino de Armati, en Florencia. El primer retrato conocido de una persona con anteojos es el de un fresco pintado por Tomaso da Modena, en 1352, que se muestra en la figura 1.



Figura 1. Fresco de Tomaso da Modena donde se muestra una persona con anteojos, pintado en 1352.


HISTORIA DE LA ÓPTICA INSTRUMENTAL

Como es natural, la historia de la óptica geométrica e instrumental está íntimamente ligada a la historia de las lentes, al descubrimiento de las leyes de la reflexión, de la refracción, y de la formación de las imágenes, al igual que a la historia de la invención de los primeros instrumentos ópticos, como el telescopio, el microscopio y el espectroscopio. En cierto modo, la mayoría de los instrumentos ópticos posteriores son derivaciones o modificaciones de éstos, por lo que es sumamente interesante describir cómo se inventaron y desarrollaron.



Figura 2. Willebrod Snell (1591-1626). Copia al óleo por Zacarías Malacara M.

Al fabricar las primeras lentes, más de dos siglos antes del inicio del Renacimiento, Roger Bacon (1214-1294) sugirió en Inglaterra la forma en que se podría hacer un telescopio, aunque nunca llegó a construir uno. Ya durante el Renacimiento volvió a progresar la óptica a grandes pasos, comenzando por el descubrimiento del telescopio, que se describirá más adelante. Es interesante saber que fue hasta después de que se construyeron los primeros telescopios, que Willebrod Snell (1591-1626), (Figura 2), en Leyden, Holanda, en 1621, descubrió la ley de la refracción. Esta ley es válida y exacta para cualquier magnitud del ángulo de incidencia y no solamente aproximada como la de Tolomeo. Snell era un matemático, más interesado en problemas matemáticos que en óptica. Independientemente de Snell, en 1637 René Descartes también encontró la misma ley, deduciéndola de analogías mecánicas. Esta ley es el pilar fundamental de la óptica geométrica, gracias a la cual fue posible establecer más tarde toda la teoría de la formación de imágenes con lentes y con espejos. La ley de Snell la podemos enunciar diciendo que el cociente de los senos de los ángulos de incidencia y de refracción, respectivamente, es igual a una constante característica del medio, n, a la que llamamos índice de refracción. Esto se puede representar por:

donde q1 es el ángulo de incidencia y q2 es el ángulo de refracción, respectivamente, que se miden con respecto a una línea imaginaria perpendicular a la superficie como se muestra en la figura 3. Estos índices de refracción son unas constantes, que tienen valores característicos para diferentes materiales, como se muestra en el cuadro 2. En general, el índice de refracción es tanto mayor cuanto más denso sea el material.

Pierre Fermat (1601-1665) en Toulouse, estableció su muy famoso principio que dice que la luz, al viajar de un punto a otro, atravesando uno o más medios con diferentes densidades, sigue la trayectoria que le tome el mínimo tiempo de recorrido. De este principio es posible deducir la ley de la refracción de Snell. Sir William Rowan Hamilton (1805-1865) probó en 1831 que el concepto de rayo de luz se puede usar con bastante precisión si la frecuencia de la onda de luz es muy alta, demostrando así que la óptica geométrica es solo un caso particular de la óptica de ondas. Con esto se validaba el concepto de rayo luminoso, que tanto se ha usado para diseñar sistemas ópticos.



Figura 3. Refracción de un rayo luminoso, siguiendo la ley de Snell.

CUADRO 2. Índices de refracción de algunos materiales transparentes

Material
Índice de refracción

Vacío
1.0000
Aire
1.0003
Agua
1.33
Cuarzo fundido
1.46
Acrílico
1.49
Crown borosilicato
1.51
Crown ordinario
1.52
Bálsamo de Canadá
1.53
Flint ligero
1.57
Crown de bario denso
1.62
Flint extra denso
1.72
Diamante
2.42



Karl Friedrich Gauss (1777-1855) nacido en Brunswick, Alemania, fue otro de los grandes genios que trabajaron para el desarrollo de la ciencia en muchos aspectos y que, por supuesto, no dejaron de hacer su contribución al desarrollo de la óptica. Desde niño, Gauss manifestó su gran inteligencia. Es famosa la anécdota de que cuando tenía apenas diez años de edad, su maestra solicitó a todos los alumnos de su clase que sumaran todos los números del uno al cien. La razón era que la maestra deseaba mantener ocupados a sus alumnos por un gran tiempo. Sin embargo, el niño Karl entregó el resultado en tan sólo unos segundos. El método que el niño empleó se basaba en el hecho de que el primer número más el último sumaban 101, lo mismo que el segundo y el penúltimo, y así sucesivamente. De esta manera formaba 50 parejas, por lo que el resultado debía ser 101x50=5 050. Los descubrimientos matemáticos de Gauss durante su vida son tantos y tan importantes que sin lugar a dudas se le puede considerar como uno de los mejores matemáticos que han existido. La contribución de Gauss a la óptica fue el establecimiento de la teoría de primer orden de la óptica geométrica, que se basa en la ley de la refracción y en consideraciones geométricas, para calcular las posiciones de las imágenes y sus tamaños, en los sistenas ópticos formados por lentes y espejos. Esta teoría, hasta la fecha, se sigue usando con mucho éxito para diseñar todo tipo de instrumentos ópticos, y con ella es posible, por ejemplo, calcular las posiciones del objeto y de la imagen formada por una lente convergente simple, es decir, aquella que hace que los rayos que entren paralelos a la lente converjan a un punto llamado foco, como se muestra en la figura 4.



Figura 4. Formación de una imagen con una lente.

sábado, 11 de junio de 2011

¿Como surgió Facebook y que "Daños" causa?

En febrero de 2004, un grupo de amigos de la universidad de Harvard creó una pequeña red social llamada The Facebook (libro de caras) en alusión a los anuarios de fotografías estudiantiles. El grupo, capitaneado por Mark Zuckerberg, actual jefe ejecutivo de Facebook, incluía a dos compañeros de cuarto de Zuckerberg –Dustin Moskovitz y Chris Hughes- y a un coordinador de ciencias informáticas: Andrew McCollum.

En un principio, Facebook nació como una herramienta para su estricto uso entre los estudiantes de Harvard. Sin embargo, el éxito del proyecto fue tal, que en menos de un mes ya lo utilizaban la mitad de los universitarios del campus, por lo que apenas dos meses después, la red social se amplió al resto de universidades de la Ivy League. En el mes de diciembre, el número de estudiantes apuntado a The Facebook superaba el millón. Tras extenderse a diversas comunidades estudiantiles internacionales, en septiembre de 2006, Facebook se ampliaba al resto del mundo.

A finales del mes de octubre de 2007, Microsoft compró un 1,6% de Facebook por 138 millones de euros.

Mark Zuckerberg, que ha cumplido 25 años en 2009, se ha convertido en el millonario más jovende la lista Forbes 2009, con un patrimonio neto de USD$2.000 millones.


Realidad de Facebook "Daños"


Facebook es el sitio mas espía que existe. Por ejemplo cuando el usuario cancela su cuenta en el facebook, los de la empresa se quedan con tus datos con tus fotos,comentarios etc.. así es, ellos guardan la información de los usuarios que se fueron y quedan archivados, y probablemente algún día lo usen contra la gente que quieran arruinarles la vida por "x" razón. Es un sitio depredador y es el que mas invade la privacidad de las personas, ademas de que es el mejor método de espiación del mundo por que ellos no tienen que secuestrarte ni buscarte, ni golpearte ni rasterarte por satélite para averiguar tus datos porque tu entras y pones todos tus datos, subes tus fotos y expresas tus pensamientos, tus ideales y pueden llegar a conocerte mejor que tu mismo. Solo basta que pongas un poco de tu información y ya después saben todo de ti usando otras tecnologías.


Fuente: CONFIDENCIAL

LED ó Diodo Emisor de Luz [ Light-Emitting Diode ]

Si alguna vez ha visto, unas pequeñas luces de diferentes colores que se encienden y apagan, en algún circuito electrónico, ha visto los diodo LED en funcionamiento.

Simbolo del diodo LED (diodo emisor de luz) - Electrónica Unicrom
Símbolo del diodo LED

El LED es un tipo especial de diodo, que trabaja como un diodo común, pero que al ser atravesado por la corriente eléctrica, emite luz.

Existen diodos LED de varios colores que dependen del material con el cual fueron construidos. Hay de color rojo, verde, amarillo, ámbar, infrarrojo, entre otros.

Eléctricamente el diodo LED se comporta igual que un diodo de silicio o germanio.

Si se pasa una corriente a través del diodo semiconductor, se inyectan electrones y huecos en las regiones P y N, respectivamente.

Dependiendo de la magnitud de la corriente, hay recombinación de los portadores decarga (electrones y huecos). Hay un tipo de recombinaciones que se llaman recombinaciones radiantes (aquí la emisión de luz).


Dependiendo del material de que está hecho el LED, será la emisión de la longitud de onda y por ende el color. Ver la tabla más abajo

La relación entre las recombinaciones radiantes y el total de recombinaciones depende del material semiconductor utilizado (GaAs, GaAsP,y GaP)

Debe de escogerse bien la corriente que atraviesa el LED para obtener una buena intensidad luminosa y evitar que este se pueda dañar.

El LED tiene un voltaje de operación que va de 1.5 V a 2.2 voltios aproximadamente y la gama de corrientes que debe circular por él está entre los 10 y 20 miliamperios (mA) en los diodos de color rojo y de entre los 20 y 40 miliamperios (mA) para los otros LEDs.

Tabla de material de fabricación, longitud de onda y color de diferentes tipos de LEDs  - Electrónica Unicrom

Los diodos LED tiene enormes ventajas sobre las lámparas indicadoras comunes, como su bajo consumo de energía, su mantenimiento casi nulo y con una vida aproximada de 100,000 horas.

El diodo LED debe ser protegido. Una pequeña cantidad de corriente en sentido inverso no lo dañará, pero si hay picos inesperados puede dañarse.

Una forma de protegerlo es colocar en paralelo con el diodo LED pero apuntando en sentido opuesto un diodo de silicio común.

Aplicaciones tiene el diodo LED. Se utiliza ampliamente en aplicaciones visuales, como indicadoras de cierta situación específica de funcionamiento.

Ejemplos- Se utilizan para desplegar contadores- Para indicar la polaridad de una fuente de alimentación de corriente continua.- Para indicar la actividad de una fuente de alimentación de corriente alterna.

- En dispositivos de alarma, etc.

Las desventajas del diodo LED son que su potencia de iluminación es tan baja, que su luz es invisible bajo una fuente de luz brillante y que su ángulo de visibilidad está entre los 30° y 60°. Este último problema se corrige con cubiertas difusoras de luz.

Con los últimos adelantos, en los diodos LED de alta luminosidad, este problema prácticamente ha quedado en el pasado.



Fuente: http://www.unicrom.com/Tut_diodo_led.asp


jueves, 2 de junio de 2011

TRANSISTOR FET

Los transistores más conocidos son los llamados bipolares (NPN y PNP), llamados así porque la conducción tiene lugar gracias al desplazamiento de portadores de dos polaridades (huecos positivos y electrones negativos), y son de gran utilidad en gran número de aplicaciones pero tienen ciertos inconvenientes, entre los que se encuentra su impedancia de entrada bastante baja.

Existen unos dispositivos que eliminan este inconveniente en particular y que pertenece a la familia de dispositivos en los que existe un solo tipo de portador de cargas, y por tanto, son unipolares. Se llama transistor de efecto campo.

Explicación de la combinación de portadores.

Puesto que hay una tensión positiva entre el drenador y el surtidor, los electrones fluirán desde el surtidor al drenador (o viceversa según la configuración del mismo), aunque hay que notar que también fluye una corriente despreciable entre el surtidor (o drenador) y la puerta, ya que el diodo formado por la unión canal – puerta, esta polarizado inversamente.

En el caso de un diodo polarizado en sentido inverso, donde inicialmente los huecos fluyen hacia la terminal negativa de la batería y los electrones del material N, fluyen hacia el terminal positivo de la misma.

Lo anteriormente dicho se puede aplicar al transistor FET, en donde, cuando se aumenta VDS aumenta una región con empobrecimiento de cargas libres
empobrecimiento de cargas libres

Cuando seleccionamos un transistor tendremos que conocer el tipo de encapsulado, así como el esquema de identificación de los terminales. También tendremos que conocer una serie de valores máximos de tensiones, corrientes y potencias que no debemos sobrepasar para no destruir el dispositivo. El parámetro de la potencia disipada por el transistor es especialmente crítico con la temperatura, de modo que esta potencia decrece a medida que aumenta el valor de la temperatura, siendo a veces necesaria la instalación de un radiador o aleta refrigeradora. Todos estos valores críticos los proporcionan los fabricantes en las hojas de características de los distintos dispositivos.

Explicación de sus elementos o terminales.

Un transistor de efecto campo (FET) típico está formado por una barrita de material p ó n, llamada canal, rodeada en parte de su longitud por un collar del otro tipo de material que forma con el canal una unión p-n.
En los extremos del canal se hacen sendas conexiones óhmicas llamadas respectivamente sumidero (d-drain) y fuente (s-source), más una conexión llamada puerta (g-gate) en el collar.
conexión llamada puerta (g-gate) en el collar
La figura muestra el croquis de un FET con canal N


croquis de un FET con canal N

croquis de un FET con canal N

Símbolos gráficos para un FET de canal N

Símbolos gráficos para un FET de canal N

Símbolos gráficos para un FET de canal N

Símbolos gráficos para un FET de canal P

Fundamento de transistores de efecto de campo:

Los transistores son tres zonas semiconductoras juntas dopadas alternativamente con purezas donadoras o aceptadoras de electrones.
Su estructura y representación se muestran en la tabla.

Modelo de transistor FET canal n

Modelo de transistor FET canal n

Modelo de transistor FET canal p

Modelo de transistor FET canal p

Las uniones Puerta-Drenador y la Surtidor-Puerta están polarizadas en inversa de tal forma que no existe otra corriente que la inversa de saturación de la unión PN.
La zona n (en el FET canal n) es pequeña y la amplitud de la zona de deplexión afecta a la longitud efectiva del canal. La longitud de la zona de deplexión y depende de la tensión inversa (tensión de puerta).

Zonas de funcionamiento del transistor de efecto de campo (FET):

  • ZONA ÓHMICA o LINEAL: En esta zona el transistor se comporta como una resistencia variable dependiente del valor de VGS. Un parámetro que aporta el fabricante es la resistencia que presenta el dispositivo para VDS=0 (rds on), y distintos valores de VGS.
  • ZONA DE SATURACIÓN: En esta zona es donde el transistor amplifica y se comporta como una fuente de corriente gobernada por VGS


3. ZONA DE CORTE: La intensidad de drenador es nula (ID=0).
Zonas de funcionamiento del transistor de efecto de campo (FET

A diferencia del transistor BJT, los terminales drenador y surtidor del FET pueden intercambiar sus papeles sin que se altere apreciablemente la característica V-I (se trata de un dispositivo simétrico).

operación de un FET de CANAL P

La operación de un FET de CANAL P es complementaria a la de un FET de CANAL N, lo que sigmifica que todos los voltajes y corrientes son de sentido contrario.


Entre las principales aplicaciones de este dispositivo podemos destacar:

APLICACIÓN

PRINCIPAL VENTAJA

USOS

Aislador o separador (buffer)

Impedancia de entrada alta y de salida baja

Uso general, equipo de medida, receptores

Amplificador de RF

Bajo ruido

Sintonizadores de FM, equipo para comunicaciones

Mezclador

Baja distorsión de intermodulación

Receptores de FM y TV,equipos para comunicaciones

Amplificador con CAG

Facilidad para controlar ganancia

Receptores, generadores de señales

Amplificador cascodo

Baja capacidad de entrada

Instrumentos de medición, equipos de prueba

Troceador

Ausencia de deriva

Amplificadores de cc, sistemas de control de dirección

Resistor variable por voltaje

Se controla por voltaje

Amplificadores operacionales, órganos electrónicos, controlas de tono

Amplificador de baja frecuencia

Capacidad pequeña de acoplamiento

Audífonos para sordera, transductores inductivos

Oscilador

Mínima variación de frecuencia

Generadores de frecuencia patrón, receptores

Circuito MOS digital

Pequeño tamaño

Integración en gran escala, computadores, memorias

Siempre nos va a interesar estar en la región de saturación, para que la única variable que me controle la cantidad de corriente que pase por el drenador sea la tensión de puerta.

Ecuación de Shockley:


ID=IDSS(1-VGS/Vp)2

Ecuación de Shockley

Donde:

  • Vp es la tensión de puerta que produce el corte en el transistor FET.
  • IDSS es la corriente máxima de drenador que circula por el transistor, al aumentar VDS, cuando la polarización de la puerta es VSG= 0 vol

PARAMETROS DEL FET

La corriente de sumidero Id es función tanto de la tensión de sumidero Vds como de la puerta Vgs. Como la unión está polarizada inversamente, suponemos que la corriente de puerta es nula, con lo que podemos escribir:
Ig = 0 e Id = ƒ(Vds, Vgs)

En la zona de estricción (saturación) en que las características son casi rectas (en el gráfico, son horizontales, pero en realidad tienen una pendiente positiva) podemos escribir la respuesta del transistor para pequeños incrementos de Vds y Vgs en esta forma

El parámetro rd se llama resistencia diferencial del sumidero del FET, y es la inversa de la pendiente de la curva. Que como en el gráfico, dicha pendiente es cero (en la realidad, como he dicho antes existe algo de pendiente), entonces la rd es infinita (muy grande).
El parámetro gm se le denomina conductancia mutua o transconductancia, y es igual a la separación vertical entre las características que corresponden a diferencias de valor de Vgs de 1 voltio.

TÉCNICAS DE MANUFACTURA.

Es un dispositivo de tres terminales y dos junturas, creado en un material semiconductor sólido cristalino (generalmente germanio, silicio, ó arseniuro de galio) con diferentes contaminaciones, que permite regular la circulación de una corriente eléctrica mediante una corriente de control, mucho menor.

El primer transistor se creó en los laboratorios Bell (Estados Unidos de N.A.) en 1947, partiendo de una oblea de germanio, gracias a los trabajos de William Shockley, John Bardeen, y Walter Brattain, por lo cual recibieron el premio Nobel.

En el año 1954, la firma Texas Instruments de Estados Unidos, fabricó el primer transistor de silicio, lo cual bajó los costos y permitió, gracias a nuevas técnicas de fabricación, su comercialización a gran escala.

Han reemplazado en la mayoría de las aplicaciones a los tubos ó válvulas electrónicas, en los circuitos de radio, audio, etc. permitiendo la fabricación de equipos portátiles e inmunes a vibraciones y de bajo consumo de energía (en los primeros tiempos se llamaba a los equipos transistorizados de "estado sólido" o "frios").

Como se indicó con anterioridad, el JFET es un dispositivo de tres terminales, siendo una de ellas capaz de controlar el flujo de corriente entre las otras dos. En nuestra explicación sobre el transistor BJT se utilizó el transistor npn a lo largo de la mayor parte de las secciones de análisis y diseño, con una sección dedicada a los efectos resultantes de emplear un transistor pnp. Para el transistor JFET el dispositivo de canal-n aparecerá como el dispositivo predominante, con párrafos y secciones dedicadas a los efectos resultantes del uso de un JFET de canal-p.

La construcción básica del JFET de canal-n se muestra en la figura siguiente Observe que la mayor parte de la estructura es el material tipo n que forma el canal entre las capas difundidas en material tipo p. El extremo superior del canal tipo n se conecta mediante contacto óhmico a la terminal denominada como drenaje (drain) (D), mientras que el extremo inferior del mismo material se conecta por medio de contacto óhmico a la terminal llamada la fuente (source) (S). Los dos materiales tipo p se encuentran conectados juntos y al mismo tiempo hacia la terminal de compuerta (gate) (Q). Por tanto, esencialmente el drenaje y la fuente se conectan en esencia a los extremos del canal tipo n y la compuerta, a las dos capas del material tipo p. En ausencia de cualquiera de los potenciales aplicados, el JFET tiene dos uniones p-n bajo condiciones sin polarización. El resultado es una región de agotamiento en cada unión, como se ilustra en la figura siguiente, que se parece a la misma región de un diodo bajo condiciones sin polarización. Recuérdese también que una región de agotamiento es aquella región carente de portadores libres y por lo tanto incapaz de permitir la conducción a través de la región.

Transistor de unión de efecto de campo (JFET)
Transistor de unión de efecto de campo (JFET).

Muy pocas veces las analogías son perfectas y en ocasiones pueden ser engañosas, pero la analogía hidráulica de la figura siguiente proporciona un sentido al control del JFET en la terminal de compuerta y a la conveniencia de la terminología aplicada a las terminales del dispositivo. La fuente de la presión del agua puede semejarse al voltaje aplicado del drenaje a la fuente, el cual establecerá un flujo de agua (electrones) desde el grifo o llave (fuente). La "compuerta", por medio de una señal aplicada (potencial), controla el flujo del agua (carga) hacia el "drenaje". Las terminales del drenaje y la fuente están en los extremos opuestos del canal-n, como se ilustra en la figura anterior, debido a que la terminología se define para el flujo de electrones.

Analogía hidráulica para el mecanismo de control del JFET
Analogía hidráulica para el mecanismo de control del JFET.

VGS = 0 V, Vds cualquier valor positivo

En la figura siguiente se ha aplicado un voltaje positivo VDS y a través del canal y la compuerta se ha conectado en forma directa a la fuente para establecer la condición VGS = 0 V. El resultado es que las terminales de compuerta y fuente se hallan al mismo potencial y hay una región de agotamiento en el extremo inferior de cada material p, semejante a la distribución de las condiciones sin polarización de la figura del transistor FET. En el instante que el voltaje vDD ( = VDS) se aplica, los electrones serán atraídos hacia la terminal de drenaje, estableciendo la corriente convencional ID con la dirección definida de la figura siguiente la trayectoria del flujo de carga revela con claridad que las comentes de fuente y drenaje son equivalentes (ID = Is). Bajo las condiciones que aparecen en la figura siguiente, el flujo de carga es relativamente permitido y limitado únicamente por la resistencia del canal-n entre el drenaje y la fuente.
JFET en la región VGS
JFET en la región VGS = 0 V y VDS > 0 V.

Es importante observar que la región de agotamiento es más ancha cerca del extremo superior de ambos materiales tipo p. La razón para el cambio en la anchura de la región se puede describir mejor con la ayuda de la figura siguiente. Suponiendo una resistencia uniforme en el canal-n, la resistencia del canal puede dividirse en las partes que aparecen en la figura siguiente. La corriente ID establecerá los niveles de voltaje a través del canal, como se indica en la misma figura. El resultado es que la región superior del material tipo p estará inversamente polarizada alrededor de los 1.5 V, con la región inferior inversamente polarizada sólo en los 0.5 V. Recuérdese, la explicación de la operación del diodo, que cuanto mayor sea la polarización inversa aplicada, mayor será la anchura de la región de agotamiento, de aquí la distribución de la región de agotamiento que se muestra en la figura siguiente. El hecho de que la unión p-n esté inversamente polarizada en la longitud del canal da por resultado una corriente de compuerta de cero amperes, como se ilustra en la misma figura. El hecho que iG = O A es una importante característica del JFET.
Variación de los potenciales de polarización inversa a través de la unión p-n de un JFET de canal n

Variación de los potenciales de polarización inversa a través de la unión p-n de un JFET de canal n.

Explicación de su encapsulado e identificación de sus terminales.

La fabricación de varios de estos dispositivos conectados en diversas configuraciones en una misma oblea de silicio, permitió crear los circuitos integrados o chips, base de todos los aparatos electrónicos modernos.
Conectados de manera apropiada, permite amplificar señales muy débiles, convertir energía, encender o apagar sistemas de elevada potencia, crear osciladores desde frecuencias bajas hasta frecuencias de radio, etc.

Según sea el orden de los materiales que forman las junturas, existen los transistores tipo NPN ó PNP, los cuales, en disposiciones circuitales apropiadas permiten crear una enorme cantidad de circuitos para diversos fines, ya que se complementan pues funcionan con sentidos opuestos de circulación de corriente.
En la actualidad, existen una gran variedad de transistores, de efecto de campo o FET (el electrodo de control actúa por medio de campo eléctrico), los tipo unijuntura, los MOS o de óxido metálico (variante de los FET), y otras variaciones como los VMOS (usados para controlar grandes potencias y tensiones), etc.

Existe una innumerable cantidad de diseños, especializados para alta potencia, bajo ruido eléctrico, alta frecuencia, alta ganancia de corriente, alta tensión, aplicaciones de conmutación, etc.

Los Transistores BJT (Bipolar Junction Transistor) ó en español Transistor de Unión Bipolar.

El transistor bipolar es el más común de los transistores, y como los corriente, puede ser de germanio o silicio.

Existen dos tipos transistores: elNPN y el PNP, y la dirección del flujo de la corriente en cada caso, lo indica la flecha que se ve en el gráfico de cada tipo de transistor.

Símbolos de los transistores bipolares NPN y PNP - Electrónica Unicrom

El transistor es un dispositivo de 3 patillas con los siguientes nombres: base (B), colector (C) y emisor (E), coincidiendo siempre, el emisor, con la patilla que tiene la flecha en el gráfico de transistor.

El transistor bipolar es un amplificador de corriente, esto quiere decir que si le introducimos una cantidad de corriente por una de sus patillas (base), el entregará por otra (emisor) , una cantidad mayor a ésta, en un factor que se llama amplificación.

Este factor se llama ß (beta) y es un dato propio de cada transistor.

Entonces:
- Ic (corriente que pasa por la patilla colector) es igual a ß (factor de amplificación) por Ib (corriente que pasa por la patilla base).
- Ic = ß * Ib
- Ie (corriente que pasa por la patilla emisor) es del mismo valor que Ic, sólo que, la corriente en un caso entra al transistor y en el otro caso sale de él, o viceversa.

Según la fórmula anterior las corrientes no dependen del voltaje que alimenta el circuito (Vcc), pero en la realidad si lo hace y la corriente Ib cambia ligeramente cuando se cambia Vcc. Ver figura.

Curva de transferencia de un transistor real para una corriente de base dada - Electrónica UnicromCurvas de transferencia del transistor bipolar para diferentes corrientes de base. Ver zonas de saturación y de corte - Electrónica Unicrom

En el segundo gráfico las corrientes de base (Ib) son ejemplos para poder entender que a más corriente la curva es más alta.

lunes, 18 de abril de 2011

YO, RESPIRO

Quizá muchas personas te digan esa respuesta solo para molestarte cuando le haces la pregunta ¿que haces?